jueves, 20 de mayo de 2004
domingo, 9 de mayo de 2004
Circunferencias de radio conocido tangentes a dos rectas dadas
Para trazar las circunferencias de radio R conocido que son tangentes a dos rectas r y s dadas se trazarán las rectas paralelas a r y a s situadas a una distancia R de las mismas, a uno y otro lado. Las dos paralelas a r cortarán a las dos paralelas a s en cuatro puntos de intersección, que son los cuatro centros de las circunferencias solución al problema. Estos cuatro centros están situados en las bisectrices de los ángulos formados por las rectas r y s y son además los vértices de un rombo (un cuadrado si las rectas r y s son perpendiculares).
Si las rectas r y s fueran paralelas sólo será posible dibujar circunferencias de radio R tangentes a ambas cuando la distancia entre r y s sea igual a 2R, en cuyo caso existirán infinitas circunferencias tangentes a r y a s, siendo el lugar geométrico de sus centros la paralela a r y a s situada a mitad de distancia de ambas.
martes, 4 de mayo de 2004
Circunferencias de radio conocido tangentes a una circunferencia y que pasan por un punto dado
Para hallar las circunferencias de radio R conocido que pasando por un punto P dado son tangentes a una circunferencia dada de centro C y radio r, se trazará una circunferencia con centro en P y radio R y dos circunferencias con centro en C y radios R+r y |R-r|, respectivamente. Los puntos de intersección de dichas circunferencias serán los centros de las circunferencias que pasando por P y siendo tangentes a C tienen radio R. Los puntos de intersección situados sobre la circunferencia de radio R+r se corresponden con los centros de las circunferencias que son tangentes exteriores a C, mientras que los puntos de intersección situados sobre la circunferencia de radio |R-r| se corresponden con los centros de las circunferencias que son tangentes interiores a C.
La circunferencia de centro P y radio R podrá ser secante, tangente o no cortar a las circunferencias de radio R+r y de radio |R-r|, pudiendo existir 1, 2, 3, 4 o ninguna solución al problema (como mucho habrá dos circunferencias tangentes interiores a C y dos circunferencias tangentes exteriores a C que pasan por P y tienen radio R).
lunes, 3 de mayo de 2004
Trazar una circunferencia tangente a dos rectas dadas r y s que se cortan y pasan por un punto P de la circunferencia
Dadas las dos rectas r y s, se traza una bisectriz entre ellas, en esa recta bisectriz estarán todos los centros posibles para que las circunferencias realizadas sean tangentes a r y s. Para hallar la que pasa por el punto P, se traza una perpendicular desde P a la recta s y se realiza otra bisectriz entre la recta perpendicular y la recta s, donde corte esta bisectriz a la anterior realizada entre las rectas r y s, será el centro de la circunferencia pedida.
Circunferencias de radio conocido tangentes a una recta y que pasan por un punto dado
Para hallar las circunferencias de radio R conocido que pasando por un punto P dado son tangentes a una recta r dada, se trazará una circunferencia de radio R con centro en P y la paralela a la recta r a una distancia R de la misma que esté situada en el mismo lado de la recta r que el punto P (de los dos semiplanos en que divide la recta r al plano, los centros de las circunferencias tangentes a r que pasan por P habrán de estar necesariamente en el semiplano que contiene a P, con lo cual no es necesario dibujar la paralela a r situada en el otro semiplano, ya que se sabe de antemano que no va a arrojar ninguna solución). Los puntos de intersección de la recta paralela con la circunferencia de centro P y radio R constituirán los centros de las circunferencias solución al problema. La paralela puede ser tangente, secante o no cortar a la circunferencia de centro P y radio R, existiendo entonces 1, 2 o ninguna circunferencia solución al problema, respectivamente.
domingo, 2 de mayo de 2004
Circunferencias de radio conocido que pasan por dos puntos dados
Comenzamos las entradas de este mes con trabajos de circunferencias. Aquí la explicación de hoy:
Para dibujar una las circunferencias de radio R conocido que pasan por dos puntos P y Q dados se trazarán sendos arcos de radio R con centro en los puntos P y Q. Los centros de las circunferencias solución estarán en la intersección de ambos arcos. Dichos arcos podrán ser tangentes, secantes o no cortarse, de manera que el problema podrá tener 1, 2 o ninguna solución, respectivamente.
sábado, 1 de mayo de 2004
Antes de empezar
Vamos con unos conocimientos básicos, antes de entrar en materia.
El lugar geométrico de los centros de todas las circunferencias de radio R conocido que pasan por un punto del plano fijo es la circunferencia con centro en el punto dado y radio R.
El lugar geométrico de los centros de todas las circunferencias de radio R conocido tangentes a una recta r dada son las dos rectas paralelas a r y situadas a una distancia R de la misma.
El lugar geométrico de los centros de todas las circunferencias de radio R conocido tangentes a una circunferencia de radio r dada son dos circunferencias concéntricas a la dada de radios R+r y |R-r|, respectivamente.
En efecto, si una circunferencia de radio R conocido ha de ser tangente a una recta o a una circunferencia dada, su centro deberá estar a una distancia de la recta o de la circunferencia igual a R. El lugar geométrico de los puntos que están a una distancia R de una recta dada son dos rectas paralelas a la recta dada, una a cada lado de la recta. Por su parte, el lugar geométrico de los puntos que están a una distancia R de una circunferencia dada son circunferencias concéntricas a la dada de radios R+r y |R-r|, siendo r el radio de la circunferencia dada. No importa cual de los radios R o r sea mayor; la expresión |R-r| siempre se interpretará como la diferencia entre el radio mayor y el radio menor.
En general, para dibujar una circunferencia de radio R conocido que sea tangente a dos elementos del plana o que pase por algún punto dado, habrá que determinar su centro como la intersección de dos de los lugares geométricos antes citados. En total, existen 6 casos diferentes, tal y como se detalla en los siguientes epígrafes.